Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Tags: Materials Chemistry and Nanoscience Seminar

The physical properties of solids are inherently coupled to their structure and dimensionality. As such, the discovery of nascent physical phenomena and the realization of complex miniaturized devices in the solid state have incessantly relied upon the creation of stable low-dimensional crystals that approach the atomic limit. Towards this end, us in the Maxx Lab are focused towards the discovery and chemical understanding of several classes of…
Transdermal drug delivery offers an alternative to traditional oral and intravenous methods, addressing challenges like poor bioavailability and patient discomfort. However, this approach is limited to molecules with specific physicochemical properties (such as low molecular weight, high potency, and moderate lipophilicity) due to the skin’s stratum corneum barrier. Among various enhancement techniques, microneedle (MN) technology has emerged as…
Polyhydroxyalkanoates (PHAs) have been explored for use in paperboard food and beverage packaging as an environmentally friendly replacement to petroleum-based coatings like polyethylene. Paperboard coatings are primarily extrusion coated; however, extrusion coating requires the material to be processed above its melting point. The PHB homopolymer has a polymer melting transition peak around 175° C, which also coincides with the onset of thermal…
Antibody-drug conjugates (ADCs) provide a powerful approach for cancer treatment. Their precise targeting and potent cell-killing effects make them a hot topic in the development of anticancer drugs. Since the US Food and Drug Administration (FDA) approved the first ADC drug Mylotarg® (gemtuzumab ozogamicin) in 2000, 14 ADCs have been approved for marketing worldwide. Currently, more than 100 ADC candidates are in clinical trials. The chemistry…
Lithium-ion batteries (LIBs) based on intercalation chemistry have been widely used in the past few decades. However, the overall energy density is approaching the ceiling due to the restriction of theoretical specific capacity of insertion-type oxide cathodes and graphite anodes. Lithium–sulfur (Li–S) batteries have great potential for applications in next-generation energy storage systems due to their higher theoretical capacity and energy…
Developing efficient, room-temperature gamma-ray detectors is crucial for medical imaging, homeland security, and nuclear safety applications. Halide perovskites have emerged as promising materials for radiation detection due to their high stopping power, defect tolerance, and cost-effective fabrication. However, the performance of perovskite-based detectors is often limited by the presence of various defects, which degrade charge collection…
Carbon-fiber reinforced plastics (CFRP) are extensively used in aerospace and automotive industries due to their exceptional strength-to-weight ratio and corrosion resistance. With global demand for CFRP tripling between 2010 and 2020, and projected to reach 200,000 tons by 2050, managing CFRP waste is becoming increasingly critical. Current recycling methods of existing composites include mechanical approaches (such as milling or grinding…
The seminar will focus on recent advancements in enhancing the efficiency of the Oxygen Evolution Reaction (OER) in water electrocatalysis. Three innovative approaches will be discussed: Se-doped FeOOH electrocatalysts, which demonstrate that selenium doping significantly enhances the OER activity of FeOOH, achieving an industrial-level current output of 500 mA cm⁻² at a low overpotential of 348 mV, and showing a high solar-to-hydrogen…
Over the past years nanocellulose has proven to be one of the most prominent green materials of modern times. Nanocellulose is derived from the most abundant natural polymer, cellulose, from various physical and chemical processes. Even though cellulose has been widely utilized for several decades, nanocellulose has emerged as a prominent material in the last two decades. Nanocellulose can be mainly divide into three types: cellulose…

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin