Chemistry Building, Room 400
Inorganic Seminar

In the past decade, two dimensional (2D) nanomaterials has been an active area of research due to their unique mechanical and electronic properties.1 MoS2 nanosheets is one of the most studied 2D nanomaterial. MoS2 nanosheets have attracted special attention due to their intrinsic band gap, highly tunable charge carrier type and high on/off ratio.2 MoS2 nanosheets are ideal materials for semiconductor devices such as field-effect transistors3, digital circuits4 etc. Moreover, well-defined spin splitting property of MoS2 nanosheets makes it a suitable candidate for spintronic devices.5 Unfortunately, common MoS2 nanosheets are nonmagnetic at room temperature, which limited its applications in spintronics. To expand the application of MoS2 nanosheets in spintronics, manipulating robust ferromagnetism in MoS2 nanosheets becomes an important issue. Over the past few years, different experimental and theoretical approaches, such as introducing vacancy defects,6 doping transition metals,7 forming heterostructures and applying strain,8 have been attempted to trigger ferromagnetism in MoS2 nanosheets. Although ferromagnetism were successfully induced, but Curie temperature of the as-activated ferromagnetisms are found to be below room temperature. Hence the problem regarding limited applicability in spintronic devices remains unsolved. This talk will focus on how to introduce and modulate robust long-range room temperature ferromagnetism in MoS2 nanosheets through three different methods such as phase incorporation,9 interface charge transfer10 and synergetic strategy of introducing doping and sulfur vacancy.11



  1. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7, 4414.
  2. Tan, H.; Hu, W.; Wang, C.; Ma, C.; Duan, H., yan, W.; Cai, L.; Guo, P.; Sun, Z.; Liu, Q.; Zheng, X.; Hu, F.; Wei, S. Small 2017, 13, 1701389.
  3. Sangwan, V. K.; Arnold, H. N.; Jariwala, D.; Marks T. J.; Lauhon, L. J.; Hersam, M. C. Nano Lett. 2013, 13, 4351.
  4. Radisavljevic, B.; Whitwick, M. B.; Kis, A. ACS Nano 2011, 5, 9934.
  5. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7, 699.
  6. Zheng, H. L.; YANG, B. S.; WANG, D. D.; Han, R. L.; Du, X. B.; Yan, Y. Appl. Phys. Lett. 2014, 104, 132403.
  7. Wen, Y. N.; Xia, M. G.; Zhang, S. L. Phy. Lett. A 2018, 382, 2354.
  8. Yun, W. S.; Lee, J. D. J. Phys. Chem. 2015, 119, 2822.
  9. Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; Sun, Z.; Wei, S. J. Am. Chem. Soc. 2015, 137, 2622.
  10. Tan, H.; Wang, C.; Hu, W.; Duan, H.; Guo, P.; Li, N.; Li, G.; Cai, L.; Sun, Z.; Hu, F.; Yan, W. ACS Appl. Mater. Interfaces 2018, 10, 31648.

Hu, W.; Tan, H.; Duan, H.; Li, G.; Li, N.; Ji, Q.; Lu, Y.; Wang, Y.; Sun, Z.; Hu, F.; Wang, C.; Yan, W. ACS Appl. Mater Interfaces 2019, 11, 31155.