Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

London Dispersion in Molecular Chemistry[1]

Portrait of Prof. Peter Schreiner, Distinguished Alumnus and seminar speaker
Date & Time:
Location:
iSTEM Building 2, Room 1218
Special Information:
2024 UGA Chemistry Distinguished Alumnus

1 Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; e-mail: prs@uni-giessen.de; www.uni-giessen.de/schreiner 

Keywords: catalysis • chemical bonding • noncovalent interactions 

Silhouette image of a geckoThe Gecko can walk up a glass window because of the adhesion in hydrophobic setae on its toes that convey van der Waals (vdW) interactions with the surface. [2] and in catalysis.[7]  The and in catalysis.[7]  attractive part of vdW-interactions is an electron correlation effect referred to as London dispersion. Its role in the formation of condensed matter has been known since van der Waals[3] and London[4] who related dispersion to polarizability. London dispersion has been underappreciated in molecular chemistry as a key element of structural stability, chemical reactivity, and catalysis. This negligence is due to the notion that dispersion is considered weak, which is only true for one pair of interacting atoms. For increasingly larger structures, the overall dispersion contribution grows rapidly and can amount to tens of kcal mol–1 . This presentation shows selected examples that emphasize the importance of inter- and intramolecular dispersion for molecules consisting mostly of first row atoms.[5] We note the synergy of experiment and theory that now has reached a stage where dispersion effects can be examined in fine detail. This forces us to re-consider our perception of steric hindrance and stereoelectronic effects, and even the transferability of chemical bond parameters from one molecule to another, both in structural chemistry

Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft. 

[1] Reviews: a) J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274-12296; b) L. Rummel, P. R. Schreiner, Angew. Chem. Int. Ed. 2024, 63, e202316364. 

[2] K. Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S. Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, R. J. Full, Proc. Natl. Acad. Sci. 2002, 99, 12252-12256. 

[3] J. D. van der Waals, Leiden University (Leiden, The Netherlands), 1873

[4] F. London, Z. Phys. 1930, 63, 245-279. 

[5] a) S. Rösel, C. Balestrieri, P. R. Schreiner, Chem. Sci. 2017, 8, 405-410; b) J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2016, 12, 231-237; c) E. Prochazkova, A. Kolmer, J. Ilgen, M. Schwab, L. Kaltschnee, M. Fredersdorf, V. Schmidts, R. C. Wende, P. R. Schreiner, C. M. Thiele, Angew. Chem. Int. Ed. 2016, 55, 15754-15759; d) C. Wang, Y. Mo, J. P. Wagner, P. R. Schreiner, E. D. Jemmis, D. Danovich, S. Shaik, J. Chem. Theory Comput. 2015, 11, 1621-1630; e) J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2014, 10, 1353-1358; f) A. A. Fokin, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafin, J. E. P. Dahl, R. M. K. Carlson, P. R. Schreiner, J. Am. Chem. Soc. 2012, 134, 13641- 13650; g) P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, Nature 2011, 477, 308-311; h) S. Grimme, P. R. Schreiner, Angew. Chem. Int. Ed. 2011, 50, 12639-12642; i) A. A. Fokin, D. Gerbig, P. R. Schreiner, J. Am. Chem. Soc. 2011, 133, 20036-20039; j) S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Cañadillas-Delgado, E. Caldeweyher, S. Grimme, P. R. Schreiner, J. Am. Chem. Soc. 2017, 139, 7428-7431; k) S. Rösel, J. Becker, W. D. Allen, P. R. Schreiner, J. Am. Chem. Soc. 2018, 140, 14421-14432. 

[6] a) J. M. Schümann, J. P. Wagner, A. K. Eckhardt, H. Quanz, P. R. Schreiner, J. Am. Chem. Soc. 2021, 143, 41-45; b) J. M. Schümann, L. Ochmann, J. Becker, A. Altun, I. Harden, G. Bistoni, P. R. Schreiner, J. Am. Chem. Soc. 2023, 145, 2093-2097. 

[7] a) C. Eschmann, L. Song, P. R. Schreiner, Angew. Chem. Int. Ed. 2021, 60, 4823-4832; b) L. Rummel, M. H. J. Domanski, H. Hausmann, J. Becker, P. R. Schreiner, Angew. Chem. Int. Ed. 2022, 61, e202204393.

Research Areas:
Prof. Peter Schreiner
Department:
Professor/Liebig Chair, Institute of Organic Chemistry
Justus Liebig University Giessen, Germany
Learn more about Prof. Schreiner and his work https://chem.uga.edu/directory/people/peter-r-schreiner

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin