Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Tags: Analytical Seminar

N-linked glycosylation is an important post translational modification, and the changes in N-glycan patterns are known to be associated with various human diseases. The study of N-glycans is crucial for the safety and efficacy of biotherapeutics. Tandem mass spectrometry (MS/MS) is a popular method in glycomics where glycans are identified via their mass to charge (m/z) and fragment ions. However, glycans exist as isomers arising from linkage,…
Ion mobility spectrometry-mass spectrometry has emerged as an orthogonal and complementary analytical technique to liquid chromatography-tandem mass spectrometry in omics-based analyses. Carbohydrate-containing molecules, such as human milk oligosaccharides and glycolipids, are notoriously difficult to characterize, largely owing to their high degrees of isomeric heterogeneity. Thus, new analytical methodologies are required to improve the…
The sequencing of intact proteins within a mass spectrometer enables the profiling of post-translational modification (PTM) crosstalk but is frequently hindered by convoluted spectra and the fact that tandem mass spectrometry (MS/MS) techniques often generate poor sequence coverages when applied to protein ions. Ion mobility spectrometry is a promising tool to overcome the complexity of these spectra by separating ions by their mass- and size-to…
The fundamental building blocks of life consist of lipids, carbohydrates, proteins, and nucleic acids which are assembled from small repeating monomer subunits. Specifically monosaccharides are the precursors of carbohydrates and amino acids are the building blocks of proteins. These two monomers are chiral (except glycine) and can exist in multiple stereochemical forms making their characterization complex.  While monosaccharides and amino…
Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful analytical technique in the biological -omics over the last two decades, due to advantages in speed and separation capabilities. Despite its now widespread utility, the resolving power of many commercial IM platforms (~40-60) is often insufficient for resolution of structurally similar compounds such as stereoisomers. This presents a critical need for us to develop higher…
Recent innovations in speed, accuracy and sensitivity have established mass spectrometry (MS) based methods as a key technology for the analysis of complex mixtures. MS techniques are emerging as the analytical gold standard for the identification and characterization of molecular components with wide applications in forensic, environmental, and biomedical research.  My research group focuses on the development of emerging technologies for…
Daidzein, a bioactive isoflavonoid found in soybeans, roselle, and other legumes, has gained attention for its antioxidant, anti-inflammatory, and estrogenic properties.1 Its therapeutic potential in bone health, cardiovascular protection, and cancer prevention has positioned it as a key compound in nutraceuticals and functional foods.1,2  Accurate extraction and analysis of daidzein are critical for quality control, pharmacokinetics…
Aerosols can have significant impact on the environment and health based on their chemical composition. It’s imperative to understand the chemical composition at the single particle level as it has influence on ice nucleation potential, cloud condensing nuclei potential and radiative forcing.1 Laser-induced breakdown spectroscopy (LIBS) is an emerging technique for online analysis of single particle aerosol composition. LIBS requires no vacuum…

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin