Date & Time: March 7 | 11am Location: Chemistry Building, Room 400 In the "bottom-up" approach, materials and devices are constructed from molecules capable of assembling themselves by principles/methods of molecular recognition. Although well-defined assemblies can be engineered by exploiting various noncovalent interactions, there are limited methods in the literature regarding the design and analysis of self-guiding molecules for materials application in which there is a strategic integrations of the self-assembling motif. The principle research conducted in the Watkins Group encompasses fundamental studies towards understanding the molecular assembly of complex systems as it relates to overall performance. Reported are design guidelines towards novel building blocks for functional materials—specifically those for applications in optoelectronic devices and biomaterials. The multi-step synthesis of these building blocks are discussed. Spectroscopic analysis as well as characterization via transmission electron microscopy (TEM) and X-ray crystallography of the molecular components and their resulting supramolecular assemblies reveal materials possessing properties that are comparable to—even surpass—those commonly reported in the literature. Results of this study will be employed towards further research in novel molecular components capable of yielding high performing materials. Type of Event: Organic Seminar Prof. Davita Watkins Department: Department of Chemistry and Biochemistry University of Mississippi